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1 Introduction

The generalized autoregressive conditional heteroscedasticity (GARCH) model and exponential

weighted moving average (EWMA) Riskmetrics model are popular for measuring and forecast-

ing volatility by financial practitioners. Since its introduction there have been many extensions

of GARCH models that resulted in better statistical fit and forecasts. For example, GJR-GARCH

(Glosten, Jagannathan, & Runkle (1993)) is one of the well-known extensions of GARCH mod-

els with an asymmetric term which captures the effect of negative shocks in equity prices on

volatility commonly referred to a leverage effect. EGARCH introduced by Nelson (1991) is an

alternative asymmetric model of the logarithmic transformation of conditional variance that does

not require positivity constraints on parameters. Different volatility regimes can be captured by

Markov Regime Switching ARCH and GARCH models allowing for stochastic time variation in

parameters. These models were introduced by Cai (1994) and Hamilton and Susmel (1994) corre-

spondingly.

Since tail risk measures typically incorporate forecasts of volatility, model specification is

important. Engle and Mezrich (1995) introduced a way to estimate value at risk (VaR) using a

GARCH model, while Hull and White (1998) proved that a GARCH model has a better perfor-

mance than a stochastic volatility model in calculation of VaR. The GJR-GARCH model was also

used by Brownlees and Engle (2017) among others for forecasting volatility and measurement of

tail and systemic risks.

A typical feature of the GARCH family models is that the long run volatility forecast con-

verges to a constant level. An exception is the Spline-GARCH model of Engle and Rangel (2008)

that allows the unconditional variance to change with time as an exponential spline and the high

frequency component to be represented by a unit GARCH process. This model may incorporate
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macroeconomic and financial variables into the slow moving component and as shown in Engle

and Rangel (2008) improves long run forecasts of international equity indices. In this model the

unconditional volatility coincides with the low-frequency volatility. The Factor-Spline-GARCH

model developed in Rangel and Engle (2012) is used to estimate high and low frequency compo-

nents of equity correlations. Their model is a combination of the asymmetric Spline GJR-GARCH

and the DCC (dynamic conditional correlations) models. Another application of an asymmetric

Spline GJR-GARCH model for commodity volatilities is in Carpantier and Dufays (2012).

In this paper we generalize the asymmetric Spline-GARCH models using a more general

threshold GARCH model as in Goldman (2017). The widely used asymmetric GJR-GARCH

model has a problem that the unconstrained estimated coefficient of α often has a negative value

for equity indices. A typical solution to this problem is setting the coefficient of α to zero in the

constrained Maximum Likelihood or Bayesian estimation. Following Goldman (2017) we use a

generalized threshold GARCH (GTARCH) model where both coefficients, α and β, in the GARCH

model are allowed to change to reflect the asymmetry of volatility due to negative shocks. We use

data for the US and Canadian equity indices, S&P 500 (SPX) and S&P/TSX (TSX), as well as a

numerical example to estimate various asymmetric volatility models. We find that the most gen-

eral GTARCH model fits better as well as does not have a negative alpha bias. We also find higher

persistence and more risk aversion in the GTARCH models.

We add macroeconomic variables of gdp growth, inflation, overnight interest rate and exchange

rate into the spline model for the slow moving component. The Spline-Macro model results in

smaller number of optimal knots for SPX and has better fit for both SPX and TSX.

Next we apply GTARCH, Spline-GTARCH and Spline-Macro-GTARCH models for value at

risk (VaR) and conditional value at risk (CVaR) or Expected Shortfall (ES) estimation. For com-
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parison we also estimate Riskmetrics exponential weighted moving average (EWMA), GARCH,

GJR-GARCH and GTARCH0 models. In the latter model that we introduce the asymmetric effect

of negative news is in the GARCH term but not in the ARCH term. We perform backtest and com-

pare the performance of VaR and ES models using Kupiec (1995) test. We find that all asymmetric

volatility models pass Kupiec test for SPX and TSX data while EWMA and GARCH fail the test.

The mandatory use of clearing in certain markets is one of the cornerstone regulations intro-

duced to prevent another global financial crisis. However, the rules implemented have not been

tested in crisis conditions. Central Counterparties (CCPs) base their risk management systems on

a tiered default waterfall relying on two types of resources provided by their members: margins

and default fund contributions. The CCPs, by acting as intermediary, have exposure to both the

buyer and the seller. The initial margins are typically set by CCPs based on Value at Risk (VaR)

models (Murphy et. al (2016),Knott and Polenghi (2006)).

As documented in Murphy et. al (2014, 2016) and Glasserman and Wu (2017) typical margin

models are typically procyclical and may negatively impact members’ funding liquidity at the

times of crisis. We explore the procyclicality of initial margin requirements based on VaR volatility

models above. On the one hand, there is a need for margins to adjust to changes in the market and

be responsive to risk. Thus margins are higher in times of stress and lower when volatility is low.

However, this practice may produce big changes in margins when markets are stressed which, in

turn, may lead to liquidity shocks. In addition, in stable times margins may be too low. CCPs

try to reduce the procyclicality of their models by using various methods, including setting floors

on margin. Some such methods are discussed in white papers produced by the Bank of England

(Murphy et. al (2016)). Their study suggests five tools, including a floor margin buffer of 25% or

greater to be used in times of stressed conditions. We suggest placing both a floor and a ceiling on
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margins, by using a threshold autoregressive model with three regimes (3TAR), as well as expert

judgement based on historical margin settings. We estimate 3 TAR for each volatility based VaR

model and discuss the resulting regimes and settings for floor and ceiling. If the margins were

allowed to be set within two bounds and the high volatility regime was not persistent, margins

would be stable. Such policy could be also useful to manage expectations at times of stressed

liquidity.

The paper is organized as follows. Section 2 presents GTARCH and Spline GTARCH models,

maximum likelihood estimation and tail risks. In Section 3 we perform data analysis for S&P500,

S&P/TSX and a numerical example with Monte Carlo simulations. In Section 4 we compare tail

risks and perform backtests of all models. Next we analyze procyclicality properties and estimate a

three regime TAR model for setting a floor and a ceiling on margins. Section 5 presents conclusion

and further work.

2 Asymmetric Threshold GARCH Models

In this section, we present the generalized threshold GARCH model (GTARCH) and a family of

its subset models including GJR-GARCH, GTARCH0 and GARCH. Next we add spline to the

GTARCH model extedning the analysis of Engle and Rangel (2008).

2.1 The Generalized Threshold GARCH (GTARCH) Model

One of the stylized facts in empirical asset pricing is negative correlation between asset returns and

volatility commonly explained by risk aversion and leverage effect. In a popular threshold ARCH

or GJR-GARCH model (Glosten, Jagannathan, and Runkle (1993)) a negative return results in an

asymmetrically higher effect on the next day conditional variance compared to a positive return.

Consider time series of logarithmic returns rt with constant mean µ and the GJR-GARCH
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conditional variance σ2
t given by

rt = µ+ut = µ+σtεt (1)

σ
2
t = ω+αε

2
t + γε

2
t I(rt−1−µ < 0)+βσ

2
t−1

where εt are Gaussian (or other distribution) independent random variables with mean zero and

unit variance, I(rt−1−µ < 0) is a dummy variable equal to one when previous day innovation ut−1

is negative; α and β are GARCH parameters; and γ is an asymmetric term capturing risk aversion.

The stationarity condition for the GJR-GARCH model is approximately given by: 1−α−β− 1
2γ>

0. 1

However, there is a problem with the threshold ARCH model above since coefficient α may

take negative values in practice. In such case a constrained optimization imposing positivity on all

variance parameters results in α equal to zero. Goldman( 2017) suggested to use a more general

Threshold GARCH or GTARCH model:

σ
2
t = ω+αε

2
t + γε

2
t I(rt−1−µ < 0)+βσ

2
t−1 +δσ

2
t−1I(rt−1−µ < 0), (2)

where added term δ reflects degree of asymmetric response in the GARCH term. In this model both

parameters γ and δ create the asymmetric response of volatility to negative shocks. Results below

show that by allowing both ARCH and GARCH parameters to change with negative news results

in better statistical fit and smaller information criteria. Moreover, the GTARCH model not only

better captures the leverage effect but also shows higher persistence for negative returns compared

to its subset GJR-GARCH model. In addition the coefficients of µ and ω could be allowed to

change with regime of negative news to make the model even more flexible. The GTARCH is a

1To be more precise the stationarity condition is given by: 1−α−β−θγ> 0, where θ is percentage of observations
in the regime with negative innovations ut < 0. In practice θ is set to 0.5.
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generalized model with the following subset of models: GJR-GARCH (δ = 0), GTARCH0 (γ = 0)

and GARCH (γ = 0 and δ = 0).

The stationarity condition for the GTARCH model is given by: 1−α−β− 1
2γ− 1

2δ > 0.2 The

more general GTARCH model due to its flexibility of parameters shows different dynamics for

GARCH parameters when the news is negative and allows for higher persistence in the regime of

negative news. This in turn takes away the negative bias from α which measures the reaction to

the positive news. At the same time estimation of extra parameters using the maximum likelihood

is a straightforward extension as shown in Section 2.3.

In addition to GTARCH models we also estimate the Exponentially Weighted Moving Average

(EWMA) model defined as:

σ
2
t = (1−λ)r2

t−1 +λσ
2
t−1; (3)

where λ is a smoothing parameter estimated using maximum likelihood. This model is not

stable but is a benchmark for 1 day volatility forecasts with typical estimate of λ = 0.94 frequently

used in the industry. The EWMA model is popular for measuring tail risks as will be discussed

below.

2.2 The Spline Generalized Threshold GARCH (Spline-GTARCH) Model

The literature incorporating economic variables for modeling and forecasting financial volatil-

ity has been growing. For example, Officer(1973), Schwert(1989), Roll (1988), Balduzzi et al.

(2001), Anderson et al. (2007) among others found that even though the linkages between aggre-

gate volatility and economy are weak volatility is higher during recessions and post-recessionary

stages, and lower during normal periods. Engle and Rangel (2008) introduced the Spline-GARCH

model combining high frequency financial returns and low frequency macroeconomic variables.

2To be more precise the stationarity condition is 1−α−β−θγ−θδ > 0
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The latter paper analyzes the effects of macroeconomic variables on the slow moving component

of volatility using spline. This model releases the assumption of volatility mean reversion to a

constant level which is a property of a stable GARCH model. Instead the long-run unconditional

variance is dynamic.

The Engle and Rangel (2008) Spline-GARCH model is given by the following returns rt ,

GARCH variance σ2
t and quadratic spline τt equations:

rt−Et−1rt =

√
τtσ

2
t zt ,

σ
2
t = (1−α−β)+α

(
(rt−1−Et−1rt)

2

τt−1

)
+βσ

2
t−1, (4)

τt = c exp(w0 +
k

∑
i=1

wi((t− ti−1)+)
2 +mtγ),

(t− ti)+ =

{
(t− ti), if t ≥ ti,
0, otherwise,

where zt is a standard Gaussian white noise process, σ2
t is a GARCH process with unconditional

mean of one, mt is the set of weakly exogenous variables (i.e. macroeconomic variables), and

(t0 = 0, t1, t2, ..., tk = T ) is a partition of total number of observation T into k equal subintervals.

The constant term in the GARCH equation is equal to (1−α−β) due to the normalization of the

GARCH process. Since the constant term in the GARCH variance equation is normalized the long

run (unconditional) variance is determined by the spline. Higher number of knots (k) implies more

cycles in the low-frequency volatility while parameters w1, ...,wk represent the sharpness of the

cycles.

We propose the Spline-GTARCH model that accounts for both asymmetric effect in high fre-

quency volatility and the slow moving spline component. Combining the Spline model (4) with
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the general GTARCH asymmetric volatility model in equation (2) we propose get:

rt = µ+
√

τtσ
2
t zt ,

σ
2
t = ω+α

(
(rt−1−µ)2

τt−1

)
+ γ

(
(rt−1−µ)2

τt−1

)
I(rt−1−µ < 0) (5)

+βσ
2
t−1 +δσ

2
t−1I(rt−1−µ < 0),

τt = c exp(
k

∑
i=1

wi((t− ti−1)+)
2 +mtγ),

where ω = (1−α−β− 1
2γ− 1

2δ) and omega > 0 if the GTARCH process is stable.

In equation (5) we simplified the return process with a constant µ instead of the time variant

conditional mean (which could be easily extended for a different process). In practice we also

dropped the constant w0 in the quadratic spline as it was never significant.3

The vector of all jointly estimated parameters in the most general model is θ= {µ,α,β,γ,δ,c,w1, ...,wk}.

We note that Spline-GJR-GARCH, Spline-GARCH and Spline-GTARCH0 (the latter has asym-

metry only in the GARCH term) are subsets of the model in equation (4) and will be estimated as

part of the analysis.

2.3 Maximum Likelihood Estimation

We use the Maximum Likelihood (MLE) to jointly estimate parameters in the Spline-GTARCH

model: θ = {µ,α,β,γ,δ,c,w1, ...,wk}. The positivity and stability restrictions on the parameters

are given by α,β,γ,δ≥ 0 and α+β+0.5γ+0.5δ < 1.

Even though we use a Gaussian process for returns in the likelihood function below the nor-

mality assumption is not crucial since asymptotically a quasi-maximum likelihood approach can

be used if returns are not Gaussian.
3A similar Spline-GARCH specification with constant µ and w0 = 0 is used by NYU Stern VLAB Institute at

vlab.stern.nyu.edu
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The likelihood function is the product of probability density functions:

f (rt ;µ,σt ,τt) =
1√

2πτtσ
2
t

e
− 1

2σ2
t

(rt−µ)2
τt .

We maximize the log likelihood function below to find estimates of θ̂:

L(θ̂) = log(L(rt |θ)) =−
T
2

log2π− 1
2

T

∑
t=1

(
logσ

2
t + logτt +

(rt−µ)2

σ2
t τt

)
. (6)

The number of knots, k, is chosen by minimizing information criteria: Bayesian-Schwartz

information criterion BIC =−2L(θ̂)+d×2/T and Akaike information criterion AIC =−2L(θ̂)+

d× ln(T )/T , where d is the dimension of θ̂. In addition to selecting number of knots in the spline

we use the above criteria for comparing overall fit of various volatility models discussed in this

paper. We note that as penalty on the degrees of freedom is higher for the BIC using this criterion

can result in choosing a more parsimonious model with smaller number of parameters.

2.4 Tail Risks

One of the most popular tail risk measures is q% value at risk (VaR) which is defined as a loss

of the portfolio that can be exceeded only with probability 1−q. For a unit value of the portfolio

essentially VaR is the negative of (1−q) quantile of the distribution of returns, where q is the upper

tail probability.4

P
(
rt <−VaRq

)
= 1−q.

Both in-sample and out-of-sample daily VaR can be computed based on volatility model used

for estimation and forecasting of portfolio returns. The VaR is typically computed using either a

parametric assumption for the distribution of returns or bootstrapped standardized residuals (also

called filtered historical simulation).
4Since VaR is reported as a positive number it is typically measured as negative of a 1%, 5% or 10% quantile.
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If a parametric assumption is used with a cumulative density function F the 1 day q% VaR is

given by:

VaRt+1 = σt+1×F−1
(1−q),

where F−1
(1−q)is the (1−q) quantile of the distribution of F. If a standard normal distribution is used

for F the daily VaR can be estimated based on F−1
(1−q) = 1.282,1.645,2.326 for q = 90%,95%,99%

respectively.

If the standardized residuals et =
rt−µ

σt
after adjustment for time-varying volatility still have fat

tails the alternative approach is to use bootstrap or filtered historical simulation (FHS) based on

Hull and White (1998) paper. They suggest to estimate the daily VaR through a filtered process by

estimating the F’s quantile instead of using parametric distributional assumption. The estimate of

F−1
1−q is the 1−q quantile of the empirical distribution of the standardized residuals et .

In an extreme outcome of 1− q probability the actual loss (L) is larger than VaR, especially,

when the loss distribution has a very long tail. An alternative commonly used tail risk is conditional

VaR (CVaR) or expected shortfall (ES) which measures the expected value of the portfolio loss

given the loss actually exceeded the VaR.

The ES is given by

ES1−q = E(L|L >VaR1−q).

Similar to VaR we can apply a parametric or Hull and White (1998, HW) method to estimate the

expected shortfall. In case of normal distribution it is given by

ES1−q =
φ(VaR1−q)

q
×σt ,

where φ is standard normal probability density function.

For the HW method we sort the standardized residuals and find the average of them in the 1−q

percent tail. Then we multiply this value by the 1 day forecast of volatility.
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3 Data Analysis

In this section we perform data analysis for S&P500 (SPX), S&P/TSX (TSX) and a numerical

example with Monte Carlo simulations. The results of thirteen estimated volatility models are

discussed below. The daily SPX data for the period between 10/08/2002-12/30/2016 was ob-

tained from CRSP in Wharton Database, while the TSX data for the period between 03/17/2003-

03/31/2017 was obtained from Bloomberg. For both series we found logarithmic returns that

resulted in 3500 observations.

For the spline model with macroeconomic variables we used similar data to Engle and Rangel

(2008) including quarterly nominal GDP growth rates for both countries; daily US federal funds

effective rate and Canadian overnight money market financing rate; monthly CPI inflation for both

countries; daily Trade Weighted U.S. Dollar Index and USD/CAD exchange rate. We also added

monthly unemployment rate for each country. Table 1 provides the description and sources of data

for all variables.

Table 1 here

We transformed macroeconomic variables for the Spline-Macro model in the following way.

For the CPI, GDP and exchange rates we used log differences, while interest rates and unemploy-

ment rates were used at levels. We ran AR(1) model for each variable and found the squared

residuals. Using the squared residuals we computed the moving average volatility for each vari-

able. For quarterly GDP data, monthly CPI and monthly unemployment data we used 250 days

moving average window, while for daily data we use 25 days window.

Tables 2 in Panel A presents the results of estimated simple GTARCH family models without

spline for SPX data. We estimate GTARCH with all parameters (α,β,γ,δ); GJR-GARCH (δ = 0),

GTARCH0 (γ = 0) and GARCH (γ = 0 and δ = 0). First we performed unconstrained optimization
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without imposing a positivity constraint on parameters and then we constrained all parameters to

be positive. For the unconstrained results we see that α =−0.0139 and is statistically significant in

the GJR-GARH model. Clearly GJR-GARCH model does not effectively capture the risk aversion

in a single asymmetric parameter γ shifting α to a negative value in order to distinguish better

negative and positive news. However, the interpretation of negative α that positive news reduces

volatility next period is unintuitive. At the same time α is positive and not significant in the more

general GTARCH model. Since GARCH parameters need to be positive we impose constraints in

optimization which results in estimated α being positive but very close to zero in these models.

Most model parameters are not affected by imposing the positivity constraint except for the GJR-

GARCH model.

In the GTARCH model both coefficients γ = .13 and δ = .16 are highly significant showing the

asymmetric effect present in both ARCH and GARCH terms and showing higher persistence in the

regime of negative news. Based on both AIC and SIC criteria a GTARCH model is chosen among

alternatives. All models satisfy stationarity condition with overall persistence = α+β+ 1
2γ+ 1

2δ <

1.

In order to check the robustness of MLE algorithm we performed Monte Carlo experiments

and present an example in Panel B of Table 1. We used previously estimated GTARCH parameters

for the SPX as true parameters of the data generating process in this example. We generated data

using equation (2) with 5000 observations and 500 replications. For each replication of the date

we estimated each model in the GTARCH family and presented means and standard errors of the

overall results. For the unconstrained optimization we still find a negative α for the GJR-GARCH

model while the GTARCH model has a small positive α. The parameters of constrained GTARCH

model are very close to true values (within one standard deviation). The parameters of subset
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models (GJR-GARCH, GTARCH0 and GARCH) produce biases due to some dropped parameters

in their specification.

Table 2 here

Tables 3 and 4 show results of estimated GTARCH family models including specifications

without spline, with spline and with spline and macroeconomic variables in equation (5). Table 3

is for SPX while Table 4 is for TSX. Only results with imposed positivity constraints are reported.

In addition to volatility models presented in the table we estimated the Riskmetrics EWMA

volatility model that is commonly used as a benchmark in volatility forecasting and value at risk

estimation. The MLE for the EWMA model resulted in the following smoothing parameters with

standard error given in brackets and information criteria:

SPX: λ = 0.9409 (0.0049), AIC = 2.7262,BIC = 2.7279

TSX: λ = 0.9369 (0.0055), AIC = 2.8222,BIC = 2.8240

The smoothing parameter is very close to .94 in both cases, which is frequently used in practice.

Thus the US and Canadian indices have similar EWMA volatility dynamics.

Based on the BIC information criterion with heavier penalty for extra parameters the GTARCH

model without spline is preferred, while using the AIC criterion the Spline-Macro-GTARCH is the

superior model. This result holds for both SPX and TSX. Note that both selected models include

the most general GTARCH specification with presence of asymmetry in both ARCH and GARCH

terms. Moreover, the asymmetric term δ goes up to 0.24 in the SPX Spline GTARCH model mak-

ing the response to negative news even more asymmetric compared to GTARCH without spline

with δ = 0.16. The optimal number of knots in the SPX Spline model is 17, while the number of

knots goes down to 8 when we add macroeconomic variables. Macroeconomic variables are useful

in modeling the low frequency component as their presence reduces the number of knots for cycles
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and they have statistically significant effect on long run volatility dynamics. The following vari-

ables are statistically significant with 10% for predicting the low frequency volatility component

for SPX:

- Interest rate (InterestR) and interest rate volatility (InterestRV ). Both have positive effect on

SPX volatility

- Volatility of the unemployment rate (unempvV ) has a negative effect on SPX volatility

- Volatility of USD trade weighted index (USDV ) has a positive effect on SPX volatility

- GDP growth has a negative effect on SPX volatility

All the signs are as expected except for the volatility of the unemployment rate. It might be the

case that the reduction in unemployment rate rather than increase in it is driving this results.

As for the Canadian data fewer macroeconomic variables were found significant at 10% and

the optimal number of knots stays the same (15 knots) after macroeconomic variables are added.

- Inflation Volatility (In f lationV ) has a negative effect on TSX volatility

- Interest rate volatility (InterestRV ) has a negative effect on TSX volatility

- Volatility of USD/CAD exchange rate (USDCADV ) has a positive effect on TSX volatility

While the effect of Canadian dollar exchange rate volatility has expected positive sign, the negative

signs for volatilities of inflation and interest rate are not intuitive. Canadian overnight interest rate

was volatile before the crisis in our sample between 2003-2007. During the 2008-2009 crisis and

afterwards interest rate was stable. Thus, during the time of high equity volatility interest rates

were not volatile compared to previous period. Similarly while the US experienced the largest
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volatility of inflation (from inflation to deflation) during the 2008-2009 financial crisis, the largest

drops in consumer prices in Canada happened in Quarter 1 2008 (before the crisis) and in Quarter

3 2012 which were relatively calm periods in the equity market.

Table 5 shows the degree of risk aversion in each model measured by the correlation between

returns rt−1 and log difference of fitted conditional variance log(σ2
t /σ2

t−1) for each model. The

more negative correlation implies higher degree of risk aversion because of asymmetrically higher

volatility for negative returns. For comparison the log difference in VIX index has correlation with

the S&P 500 return of about -0.7. Table 5 shows that the highest degree of risk aversion is captured

by the GTARCH models and the smallest correlation is for the EWMA and GARCH models that

are symmetrical.

Tables 3, 4, and 5 here

Figures 1, 2, 3, and 4 here

Figures 1 and 2 show annualized GTARCH volatilities for SPX data while Figures 3 and 4

present similar graphs for TSX. First we present the Spline-GTARCH volatility compared to a

simple GTARCH in Figures 1 and 3. Next we compare Spline-Macro-GTARCH volatility to a

simple GTARCH in Figures 2 and 4. We can see that the low frequency component is smooth for

both SPX and TSX data in the Spline-GTARCH model and the high frequency component is close

but generally higher than GTARCH. Once the macroeconomic variables are added the dynamics

of both low and high frequency volatilities becomes less smooth with higher peaks. This is due to

reaction to macroeconomic volatility in turbulent times affecting both the long run volatility and

GTARCH component. The reaction to the negative news is also amplified by the asymmetric effect

in the GTARCH model.
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Overall the US and Canadian markets volatilities have similar dynamics and peaks, however,

the Canadian market has lower level of volatility. For the low frequency spline component the

highest level during the financial crisis was 17% for TSX compared to over 40% for SPX. Similarly

the high frequency TGARCH volatility peaks in the US market are more than twice of the Canadian

market.

4 Initial Margin Measures

In this section we compute tail risks and perform backtests of all models. Next we analyze initial

margin models procyclicality and estimate a three regime threshold autoregressive model (3TAR)

for setting a floor and a ceiling on margins.

4.1 Properties of Tail Risks for Setting Margin Requirements

Figures 5 and 6 show the logarithmic returns in red and negative values of 1 day 99% Value at

Risk (VaR) for SPX and TSX correspondingly. We generated 1 day 99% VaRs using Hull and

White (1998) bootstrap method (the blue line) and Normal Distribution (the red line). We used the

Spline-GTARCH model on this graphs while all other models are reported in Tables 6 and 7. The

margin requirements with Hull and White method are higher because this method uses the actual

returns distribution with fat tails compared to Normal distribution.

Tables 6 and 7 here

Figures 5 and 6 here

Table 6 presents 1 to 3 day forecasts of all volatility models, VaR and ES produced by each

model for SPX and TSX at the time of low volatility at arbitrarily selected dates in 2016 and 2017.

Table 7 reports the same results at the time of high volatility in the Fall of 2008. Margins are
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usually computed over some period of time greater than one day. For example, exchange traded

assets are cleared within 2-3 days in the US. Thus in Tables 6 and 7 we presented 1 to 3 days tail

risks that can be easily extended to longer periods. One day VaR and ES at q = (90%,95%,99%)

are reported using Hull and White (1998) method.5 In order to compute t-day VaR and ES we

used
√

t adjustment based on Basel requirement and common practice.6 Monte Carlo simulations

would be an interesting extension of the method especially for longer time horizons.

The results for the SPX and TSX data in Table 6 show increasing volatility forecasts from 1 to

3 days since the starting point is at the time of low volatility and volatility is mean-reverting.7 Sim-

ilarly volatility forecasts go down in Table 7 when we start in high volatility period. While there is

no specific one model which always has the highest volatility forecast and tail risks among reported

models the ones with asymmetric terms (GTARCH, GJR-GARCH and GTARCH0) produce higher

forecasts and tail risks than symmetrical GARCH and EWMA models. Thus models accounting

for risk aversion such as GTARCH are useful to make sure that volatility is well measured and

sufficient margin requirements are set.

4.2 Backtesting

Backtesting is often used in practice for model validation. The testing window is set to evaluate

number of Value at Risk violations (or breaches) and compare it to expected number of violations

for specific VaR quantile. For example, if VaR is measured with q = 99% the expected number of

violations is 1%. Considering the whole sample size of N=3500 observations we would expect 35

5To save space we did not report the results with normal distribution which have similar pattern but lower estimates
as shown in Figures 6 and 7.

6The
√

t multiplier is correct only under the assumption of independence in returns.
7This is true for all models except for EWMA which is not stationary and thus only 1 day volatility forecast can be

produced.
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violations.8 If the actual breach rate turns out to be too high the VaR margin model underestimates

risk which creates a loss for the CCP. Alternatively, if the breach rate is too low the VaR model

overestimates risk and results in unnecessary high margin charges for the members of the CCP.

Thus margins can be set based based on VaR that has reasonable number of backtest violations

falling within some confidence interval.

The most popular backtesting statistical test used in practice is Kupiec (1995) proportion of

failures (POF) test with the null hypothesis that the breach rate is equal to expected (1− q)%

quantile. The two-sided test has asymptotic likelihood ratio statistics with chi-square distribution

and one degree of freedom X2(1).

Table 8 presents the results of backtesting with number of breaches for the 90%, 95% and 99%

VaRs of SPX and TSX produced by each volatility model for the whole sample period. The table

also shows 95% Confidence Intervals with lower and upper bounds for the number of allowed

breaches using Kupiec test. We report the results for VaRs using Hull and White (1998) filtered

historical simulations method to make sure that risk is not underestimated compared to models that

use Normal distribution.

Table 8 here

The results in Table 8 show that all VaRs that use asymmetric volatility models (GTARCH,

GJR-GARCH and GTARCH0) with various quantiles (q = 90%,95%,99%) pass the Kupiec test

at 5% significance level for both SPX and TSX. At the same time we find that the EWMA model

failed the test underestimating risk for both SPX and TSX for each quantile q. The GARCH model

fails the Kupiec test only for SPX data with q = 90% quantile overestimating risk.

8A common criticism of backtesting is small expected number of violations if the testing window is not large
enough.
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The backtesting results reenforce the need to use asymmetric volatility models capturing risk

aversion to make sure that margins are set adequately.

4.3 Procyclicality of the CCP’s Initial Margin Requirements

Central Counterparties (CCPs) base their risk management systems on a tiered default waterfall

relying on two types of resources provided by their members: margins and default fund contribu-

tions. The initial margins are typically set based on Value at Risk (VaR) calculations. The CCPs,

by acting as intermediary, have exposure to both the buyer and the seller. Since VaR and ES calcu-

lations are typically volatility based the properties of the underlying volatility models such as risk

aversion are essential for setting initial margin requirements.

This section explores the procyclicality of margin requirements based on VaR models and

suggests remedies to reduce procyclicality. On the one hand, there is a need for margins to adjust

to changes in the market and be responsive to risk. Thus margins are higher in times of stress

and lower when volatility is low. However, this practice may produce big changes in margins

when markets are stressed which, in turn, may lead to liquidity shocks. In addition, in stable

times margins may be too low. CCPs try to reduce the procyclicality of their models by using

various methods, including setting floors on margin. Some such methods are discussed in white

papers produced by the Bank of England (Murphy et. al (2016)). Their study suggests five tools,

including a floor margin buffer of 25% or greater to be used in times of stressed conditions.

We suggest placing both a floor and a ceiling on margins, by using a threshold autoregressive

model with three regimes, as well as expert judgement based on historical margin settings. For

example, we can evaluate the appropriateness of the suggested 25% margin buffer for maintaining

funding liquidity under stressed market. We illustrate the use of this method below.
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4.3.1 Threshold Autoregressive Model (TAR)

The Threshold Autoregressive Models (TAR) or Self-Exciting Threshold Models (SETAR) were

first introduced by Tong (1977) and Tong and Lim (1980). A smooth transition model (STAR) was

later developed by Terasvirta (1994).

Consider a time series of logarithm of Value at Risk, yt = log(VaR), with three regimes. A

simple threshold autoregressive model (TAR) with p lags for yt is given by:

yt = φ
j
0 +φ

j
1yt−1 + ...+φ

j
pyt−p + εt (7)

εt ∼ N
(
0, σ

2) ,
where j = 1, ...K with number of regimes K = 3. The regimes are determined by an observable

threshold variable zt−d with delay parameter d and sorted threshold values θ1, ...,θK−1, such that
j = 1 zt−d < θ1,

j = 2 θ1 ≤ zt−d ≤ θ2,

j = 3 zt−d > θ2.

In practice we use zt−d = yt−d and we set the delay parameter for the threshold variable equal

to one (d = 1). We also use p = 2 for the order of the autoregressive model. Alternatively, these

parameters as well as number of regimes K could be found by minimizing information criteria.

While there are various methods9 to estimate this model the commonly used classical method

is a grid search for optimal thresholds θ1, ...,θK−1 by minimizing the sum of squared residuals.

We estimated a Threshold Autoregressive Model with three regimes and two corresponding

thresholds for the logarithm of VaR for each model. VaR was previously estimated using Hull and

White (1998) method. We used log(VaR) for estimation of the 3TAR model since log transfor-

mation smoothes the peaks. Then we exponentially transformed the threshold values and reported

9For example, Goldman et al (2013) introduced a Bayesian method for measuring thresholds and long memory
parameters in a more sophisticated threshold model.
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them in Table 9.

The results for thresholds for all volatility models are given in Table 9 and results are presented

graphically as horizontal lines in Figures 7 and 8 for log(VaR) in the Spline-GTARCH model for

SPX and TSX respectively.

Table 9 here

Figures 7 and 8 here

The three-regime threshold model provides a straightforward method of setting both the floor

and the ceiling for the initial margin that is stable and not too procyclical: the one day margins are

on average bounded between 1.84% and 2.58% for SPX and between 0.77% and 1.01% for TSX.

This way when volatility is low the margins are fixed at a conservative floor level that corresponds

historically to about 29% quantile of lowest margins for SPX and at the time of market stress

they can’t go above the upper threshold. It is an interesting coincidence that the estimated lower

threshold for SPX using EWMA model corresponds to the 25% of observations in the lower regime

as was also suggested by Murphy et. al (2016). For TSX the margin buffer is a higher 32% of

observations on average. On the other hand, at the time of stress the higher regime thresholds on

average correspond to 38% of the observation points for both SPX and TSX, which may not appear

too conservative. One could add here actual historical margins set by CCPs at the time of stress,

to see if the upper bound was historically higher and would have resulted in a lower percentage of

observations for the high regime.

In order to guarantee that the margin floors and ceilings would be sufficient at the time of crisis,

we need to make sure that the time series of VaRs in the regime of high volatility are stationary and

revert back inside the bounds. The unit root test results indicate that all models pass the stability
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test for the SPX, while EWMA and all spline models without macroeconomic variables could be

not reliable to set a sustainable ceiling.

If the margins were allowed to be set within two bounds and the high volatility regime was not

persistent, margins would be stable. Such policy could be also useful to manage expectations at

times of stressed liquidity.

The mandatory use of CCP’s in certain markets is one of the cornerstone regulations introduced

to prevent another global financial crisis. However, the rules implemented have not been tested in

crisis conditions. Above we presented a simple approach to test the sustainability of margin models

using a three regime threshold autoregressive model.

5 Conclusion and Further Development

In this paper we considered asymmetric GARCH models in the Threshold GARCH family and

propose a more general Spline GTARCH model which captures high frequency return volatility,

low frequency macroeconomic volatility as well as an asymmetric response to past negative news

in both ARCH and GARCH terms.

Based on Maximum Likelihood estimation of S&P 500 returns, S&P/TSX returns and Monte

Carlo numerical example, we found that the proposed more general asymmetric volatility model

has better fit, higher persistence of negative news, higher degree of risk aversion and significant

effects of macroeconomic variables on the low frequency volatility component.

We then apply a variety of volatility models including asymmetric GARCH, GARCH and

EWMA in setting initial margin requirements for Central Clearing Counterparties (CCPs). Since

VaR and ES calculations are typically volatility based the properties of the underlying volatility

models such as risk aversion are essential for setting initial margin requirements.
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Finally we show how to mitigate procyclicality of initial margins using three regime threshold

autoregressive model.

In the future research more international equity markets can be tested and additional macroe-

conomic variables can be added to the spline. The VaR bootstrap algorithm can be modified to the

one with rolling windows. The multi-day VaR and ES multiplier could be computed using Monte

Carlo simulations. Additional back tests including Christofferson (2004) could be applied to test

that breaches are not clustered. In terms of margin pro-cyclicality mitigation a Markov-Switching

model with three regimes can be applied as well and compared to the threshold autoregressive

model.
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Table 1: Definitions of Variables and Data Sources

Definition Frequency Source
The US Data
S&P500 composite index Daily (business) CRSP Wharton Database
US federal funds effective rate Daily (business) FEDL01 Index (Bloomberg)
US nominal GDP Quarterly U.S. Department of Commerce, BEA.
US CPI, chained Monthly U.S. Bureau of Labor Statistics
Unemployment rate Monthly U.S. Bureau of Labor Statistics
Trade Weighted U.S. Dollar Index: Major Currencies Daily DTWEXM St Louis FED

The Canadian Data
S&P/TSX composite index Daily (business) SPTSX Index (Bloomberg)
Canadian overnight money market financing rate Daily (business) CAOMRATE Index (Bloomberg)
Canadian nominal GDP Quarterly CANSIM table 380-0064.
Canadian CPI Monthly CANSIM table 326-0022.
Unemployment rate Monthly CANSIM table 282-0087.
Units of USD per CAD Daily(business) CAD-USAD X-RATE-Price (Bloomberg)
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Table 2: Estimation Results for GTARCH Models: SPX and Monte Carlo Example

GTARCH GTARCH0 GJR-GARCH GARCH
True unconstrained constrained unconstrained constrained unconstrained constrained unconstrained constrained
parm parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std

Panel A: SPX Results

µ 0.0076 (0.0126) 0.0003 (0.0000) 0.0256 (0.0126) 0.0006 (0.0000) 0.0164 (0.0137) 0.0184 (0.0134) 0.0546 (0.0130) 0.0546 (0.0140)
ω 0.0218 (0.0029) 0.0226 (0.0037) 0.0220 (0.0030) 0.0226 (0.0031) 0.0227 (0.0032) 0.0238 (0.0039) 0.0238 (0.0039) 0.0238 (0.0040)
α 0.0007 (0.0081) 0.0000 (0.0130) 0.0833 (0.0085) 0.0780 (0.0082) -0.0139 (0.0069) 0.0000 (0.0194) 0.1015 (0.0110) 0.1015 (0.0110)
β 0.8357 (0.0153) 0.8374 (0.0187) 0.7823 (0.0150) 0.7887 (0.0153) 0.8978 (0.0114) 0.8879 (0.0187) 0.8755 (0.0123) 0.8755 (0.0125)
γ 0.1370 (0.0173) 0.1398 (0.0197) 0.1849 (0.0189) 0.1745 (0.0213)
δ 0.1634 (0.0240) 0.1596 (0.0248) 0.2460 (0.0237) 0.2485 (0.0246)

Persistence 0.9866 0.9871 0.9886 0.9909 0.9763 0.9752 0.9770 0.9770
BIC 2.3232 2.3239 2.3444 2.3442 2.3344 2.3353 2.3714 2.3714
AIC 2.3126 2.3133 2.3356 2.3354 2.3256 2.3265 2.3644 2.3644

Panel B: Monte Carlo Simulations

µ 0.0076 0.0030 (0.0395) 0.0100 (0.0111) 0.0196 (0.0156) 0.0205 (0.0135) 0.0145 (0.0150) 0.0164 (0.0129) 0.0594 (0.0129) 0.0592 (0.0131)
ω 0.0218 0.0275 (0.0516) 0.0222 (0.0027) 0.0244 (0.0229) 0.0221 (0.0036) 0.0231 (0.0037) 0.0231 (0.0036) 0.0262 (0.0057) 0.0259 (0.0062)
α 0.0007 0.0026 (0.0227) 0.0039 (0.0058) 0.0725 (0.0090) 0.0728 (0.0098) -0.0095 (0.0046) 0.0006 (0.0022) 0.1282 (0.0139) 0.1267 (0.0188)
β 0.8357 0.8290 (0.0622) 0.8313 (0.0121) 0.7691 (0.0627) 0.7749 (0.0155) 0.8911 (0.0183) 0.8841 (0.0177) 0.8539 (0.0141) 0.8555 (0.0202)
γ 0.1370 0.1375 (0.0177) 0.1342 (0.0138) 0.0145 (0.0104) 0.0164 (0.0086)
δ 0.1634 0.1612 (0.0392) 0.1676 (0.0224) 0.2669 (0.0454) 0.2710 (0.0240)

Persistence 0.9866 0.9809 0.9860 0.9751 0.9832 0.8888 0.8929 0.9821 0.9822
BIC 2.3869 2.3812 2.4094 2.3997 2.3932 2.3939 2.4394 2.4418
AIC 2.3763 2.3707 2.4006 2.3909 2.3844 2.3851 2.4323 2.4347

Notes: Panel A presents the results of estimation of GTARCH models for SPX data between 10/08/2002-12/30/2016 with 3500
observations. Panel B presents results of Monte Carlo simuations using parameters of estimated SPX model for data generating process.
We used sample size of N=5000 and 500 replications.
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Table 3: Estimation Results for GTARCH, Spline-GTARCH and Spline-Macro-GTARCH Models: SPX
Parm GTARCH GTARCH0 GJR-GARCH GARCH

No Spline Spline SMacro No Spline Spline SMacro No Spline Spline SMacro No Spline Spline SMacro
parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std

µ 0.000 (0.000) 0.008 (0.015) 0.013 (0.015) 0.001 (0.000) 0.026 (0.014) -0.726 (0.154) 0.018 (0.013) 0.025 (0.012) 0.028 (0.013) 0.055 (0.014) 0.058 (0.013) 0.058 (0.013)
ω 0.023 (0.004) 0.022 (0.003) 0.023 (0.003) 0.023 (0.003)
α 0.000 (0.013) 0.000 (0.022) 0.000 (0.023) 0.078 (0.008) 0.065 (0.006) 0.061 (0.018) 0.000 (0.019) 0.000 (0.000) 0.000 (0.000) 0.102 (0.011) 0.097 (0.009) 0.089 (0.010)
β 0.837 (0.019) 0.771 (0.028) 0.781 (0.030) 0.789 (0.015) 0.734 (0.015) 0.729 (0.033) 0.888 (0.019) 0.840 (0.013) 0.841 (0.016) 0.875 (0.012) 0.833 (0.015) 0.826 (0.018)
γ 0.140 (0.020) 0.131 (0.025) 0.122 (0.023) 0.175 (0.021) 0.189 (0.017) 0.177 (0.020)
δ 0.160 (0.025) 0.243 (0.033) 0.230 (0.035) 0.249 (0.025) 0.310 (0.025) 0.316 (0.031)
c 2.718 (0.222) 0.936 (0.289) 1.800 (0.300) 0.846 (0.513) 2.246 (0.418) 0.754 (0.193) 1.873 (0.373) 0.640 (0.158)

w1 -1.973 (0.236) -0.711 (0.118) -1.454 (0.370) -0.726 (0.154) -2.215 (0.426) -0.760 (0.106) -1.994 (0.462) -0.753 (0.107)
w2 4.110 (0.626) 0.854 (0.251) 2.860 (1.030) 0.821 (0.448) 4.587 (1.211) 1.032 (0.241) 4.196 (1.281) 0.891 (0.222)
w3 -2.430 (0.712) 2.106 (0.567) -1.300 (1.157) 2.365 (0.838) -2.706 (1.591) 1.854 (0.618) -2.589 (1.516) 2.301 (0.566)
w4 -0.008 (0.700) -4.443 (0.743) -0.894 (0.900) -4.796 (0.936) 0.185 (1.765) -4.267 (0.804) 0.099 (1.424) -4.759 (0.759)
w5 1.669 (0.679) 2.831 (0.455) 2.948 (0.872) 2.918 (0.468) 1.645 (1.704) 2.752 (0.486) 2.109 (1.436) 2.917 (0.464)
w6 -1.607 (0.687) -1.002 (0.398) -3.167 (1.101) -0.872 (0.569) -2.343 (1.519) -0.972 (0.380) -2.689 (1.521) -0.964 (0.353)
w7 1.628 (1.152) 0.736 (0.527) 3.230 (1.157) 0.651 (0.791) 3.429 (1.782) 0.837 (0.405) 3.071 (1.652) 0.911 (0.365)
w8 -5.859 (1.744) -0.859 (0.728) -7.984 (1.153) -1.153 (1.161) -9.085 (2.101) -1.130 (0.559) -8.526 (2.104) -1.532 (0.506)
w9 6.568 (1.585) 8.707 (0.996) 10.785 (1.950) 10.411 (2.108)
w10 -1.421 (0.907) -2.060 (0.763) -5.566 (1.875) -4.571 (1.650)
w11 -1.728 (0.815) -2.658 (0.803) 2.000 (2.214) 0.363 (1.501)
w12 1.752 (0.815) 2.842 (0.783) -1.081 (2.132) -0.282 (1.476)
w13 -1.128 (0.782) -1.278 (1.194) 0.239 (1.876) 0.904 (1.412)
w14 0.175 (0.796) -0.011 (1.153) -0.013 (1.834) -0.960 (1.667)
w15 2.089 (1.145) 1.689 (1.088) 1.971 (2.014) 2.481 (1.911)
w16 -3.193 (1.194) -3.076 (1.212) -3.218 (2.222) -4.310 (1.951)
w17 0.005 (1.105) 0.523 (1.220) -0.201 (2.488) 1.848 (2.378)

In f lation 0.084 (0.109) 0.081 (0.150) 0.112 (0.103) 0.062 (0.092)
In f lationV -1.309 (0.829) -1.983 (0.748) -1.190 (1.150) -1.983 (1.122)
InterestR 0.675 (0.152) 0.749 (0.165) 0.666 (0.152) 0.768 (0.149)

InterestRV 2.077 (1.166) 2.050 (2.079) 4.326 (2.033) 4.972 (1.541)
unempV -1.456 (0.779) -5.099 (1.911) -5.132 (4.081) -6.893 (3.957)
USDV 0.992 (0.332) 1.176 (0.329) 1.028 (0.315) 1.167 (0.305)
GDP -0.218 (0.088) -0.250 (0.154) -0.245 (0.087) -0.269 (0.076)
GDPV 0.224 (0.216) 0.500 (0.247) 0.403 (0.235) 0.601 (0.231)

Persistence 0.987 0.958 0.957 0.991 0.953 0.948 0.975 0.935 0.929 0.977 0.930 0.915
BIC 2.324 2.333 2.330 2.344 2.357 2.350 2.335 2.346 2.343 2.371 2.390 2.382
AIC 2.313 2.292 2.291 2.336 2.319 2.313 2.335 2.309 2.308 2.326 2.353 2.347

Notes: This table presents the results of all volatility models for SPX. SPX data are for the period between 10/08/2002-12/30/2016.
The sample size is 3500 observations. Only results with positivity constraints are reported. In addition to volatility models presented
in the table we estimated EWMA model that resulted in smoothing parameter estimate and standard error given in brackets: λ =
0.9409 (0.0049) and information criteria: AIC = 2.7262,BIC = 2.7279.
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Table 4: Estimation Results for GTARCH, Spline-GTARCH and Spline-Macro-GTARCH Models: TSX
Parm GTARCH GTARCH0 GJR-GARCH GARCH

No Spline Spline SMacro No Spline Spline SMacro No Spline Spline SMacro No Spline Spline SMacro
parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std

µ 0.000 (0.000) 0.010 (0.005) 0.013 (0.006) 0.000 (0.000) 0.016 (0.005) -1.256 (0.772) 0.014 (0.005) 0.015 (0.005) 0.016 (0.005) 0.024 (0.005) 0.025 (0.005) 0.026 (0.005)
ω 0.002 (0.000) 0.002 (0.000) 0.003 (0.001) 0.002 (0.001)
α 0.019 (0.009) 0.000 (0.011) 0.000 (0.062) 0.058 (0.007) 0.046 (0.005) 0.045 (0.010) 0.010 (0.009) 0.000 (0.000) 0.000 (0.000) 0.085 (0.010) 0.099 (0.010) 0.077 (0.008)
β 0.869 (0.013) 0.841 (0.014) 0.826 (0.058) 0.844 (0.013) 0.808 (0.020) 0.796 (0.023) 0.914 (0.011) 0.872 (0.013) 0.861 (0.015) 0.902 (0.012) 0.890 (0.011) 0.838 (0.017)
γ 0.069 (0.015) 0.076 (0.016) 0.079 (0.047) 0.107 (0.015) 0.130 (0.016) 0.122 (0.013)
δ 0.137 (0.024) 0.192 (0.022) 0.168 (0.031) 0.194 (0.000) 0.239 (0.026) 0.227 (0.045)
c 0.871 (0.122) 1.334 (0.362) 0.713 (0.095) 1.314 (1.305) 0.466 (0.063) 0.530 (0.113) 0.962 (0.094) 0.736 (0.038)

w1 -0.674 (0.140) -1.332 (0.218) -0.632 (0.218) -1.256 (0.772) -0.286 (0.252) -0.805 (0.330) -0.418 (0.506) -0.783 (0.241)
w2 2.026 (0.314) 3.000 (0.437) 1.938 (0.636) 2.911 (1.450) 0.722 (0.798) 1.466 (0.854) 1.117 (1.509) 1.308 (0.669)
w3 -1.882 (0.498) -0.468 (0.492) -1.692 (0.681) -0.408 (1.480) -0.029 (1.165) 1.060 (1.104) -0.373 (1.732) 1.662 (0.863)
w4 0.370 (0.985) -4.362 (0.980) 0.235 (0.544) -4.445 (6.642) -1.166 (1.343) -5.151 (1.582) -0.668 (1.844) -5.982 (1.057)
w5 0.738 (1.138) 5.727 (1.627) 0.605 (0.772) 5.771 (10.502) 1.635 (1.373) 6.368 (1.716) 0.440 (2.174) 6.999 (1.298)
w6 0.564 (0.773) -1.189 (1.090) 0.474 (1.171) -1.575 (4.702) 0.173 (1.283) -0.871 (1.125) 1.001 (1.863) -2.058 (1.531)
w7 -5.860 (1.009) -6.600 (1.753) -5.225 (1.311) -5.827 (3.282) -5.863 (1.389) -8.453 (2.149) -5.400 (1.665) -6.957 (2.570)
w8 8.342 (1.637) 8.539 (1.679) 7.426 (1.262) 7.997 (1.943) 8.688 (1.551) 10.000 (1.689) 7.829 (1.922) 9.785 (2.378)
w9 -4.116 (1.457) -3.104 (0.968) -3.014 (1.217) -2.804 (3.835) -4.278 (1.481) -3.269 (1.066) -3.860 (1.928) -3.972 (1.353)
w10 -0.486 (1.081) -1.983 (0.993) -1.745 (0.998) -2.405 (4.409) -1.089 (1.386) -2.301 (1.086) -1.057 (1.910) -1.900 (0.982)
w11 2.021 (0.868) 3.062 (1.029) 3.212 (1.035) 3.600 (3.912) 2.575 (1.351) 3.018 (1.252) 2.359 (2.149) 3.009 (1.007)
w12 -1.660 (0.744) -2.623 (0.880) -2.686 (1.083) -2.871 (2.801) -1.462 (1.340) -1.785 (1.251) -1.136 (2.138) -1.866 (1.072)
w13 1.716 (0.739) 4.839 (1.106) 3.417 (0.950) 4.603 (3.546) 2.481 (1.643) 3.933 (1.325) 1.975 (2.456) 4.095 (1.268)
w14 -1.846 (0.908) -7.824 (1.689) -5.281 (0.866) -7.622 (4.738) -5.155 (1.943) -7.644 (1.583) -4.909 (2.715) -8.343 (1.480)
w15 0.286 (0.999) 8.409 (2.383) 4.938 (1.715) 8.602 (6.186) 4.835 (2.432) 8.482 (2.208) 5.256 (3.321) 10.000 (1.696)
w16
w17

In f lation -0.191 (0.145) -0.281 (0.138) -0.263 (0.125) -0.395 (0.105)
In f lationV -10.000 (2.537) -9.358 (19.123) -9.413 (3.119) -10.000 (1.798)
InterestR 0.163 (0.140) 0.119 (1.013) 0.332 (0.140) 0.191 (0.091)

InterestRV -2.888 (1.116) -2.279 (6.446) -0.806 (1.012) -6.055 (1.211)
unempV 1.604 (1.196) 0.853 (2.361) 1.197 (1.172) 5.960 (4.520)

USDCADV 0.412 (0.143) 0.417 (0.148) 0.501 (0.137) 0.578 (0.107)
GDP -0.036 (0.054) -0.036 (0.063) -0.023 (0.040) -0.032 (0.034)
GDPV 0.057 (0.059) 0.048 (0.240) 0.028 (0.044) -0.022 (0.060)

Persistence 0.991 0.974 0.949 0.999 0.974 0.955 0.978 0.938 0.922 0.987 0.989 0.915
BIC 2.306 2.313 2.326 2.312 2.324 2.337 2.312 2.321 2.332 2.327 2.373 2.354
AIC 2.296 2.276 2.275 2.303 2.289 2.287 2.303 2.288 2.284 2.320 2.340 2.307

Notes: This table presents the results of all volatility models for TSX. TSX data are for the period between 03/17/2003-03/31/2017.
The sample size is 3500 observations. Only results with positivity constraints are reported. In addition to volatility models pre-
sented in the table we estimated EWMA model that resulted in smoothing parameter estimate and standard error given in brackets:
λ = 0.9369 (0.0055) and information criteria: AIC = 2.8222,BIC = 2.8240.
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Table 5: Degree of Risk Aversion: SPX and TSX

GTARCH GTARCH0 GJR-GARCH GARCH EWMA
SPX Spline+Macro -0.726 -0.57 -0.658 -0.158

Spline -0.764 -0.6 -0.659 -0.183
No Spline -0.755 -0.544 -0.659 -0.192 -0.146

TSX Spline+Macro -0.744 -0.614 -0.628 -0.213
Spline -0.762 -0.638 -0.661 -0.245

No Spline -0.715 -0.584 -0.632 -0.255 -0.19

Notes: This table presents correlation between returns rt and log difference of fitted conditional
variance log(σ2

t /σ2
t−1) for each model. The more negative correlation implies higher degree of

risk aversion in the model.
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Table 6: Forecasts of Volatility and Tail Risk: Low Volatility

GTARCH GTARCH0 GJR-GARCH GARCH EWMA
Forecast NoSpline Spline SMacro NoSpline Spline SMacro NoSpline Spline SMacro NoSpline Spline SMacro

Panel A: SPX t = December 30, 2016
t+1day 10.875 9.656 10.841 10.762 8.399 9.409 10.178 9.328 10.383 9.615 8.481 9.116 8.044

σ t+2day 11.065 9.717 10.949 10.976 8.437 9.468 10.345 9.391 10.516 9.814 8.595 9.256
t+3day 11.249 9.775 11.051 11.183 8.473 9.524 10.506 9.450 10.638 10.004 8.699 9.382

VaR1day q = 90% 0.854 0.772 0.867 0.849 0.683 0.771 0.820 0.765 0.858 0.787 0.713 0.759 0.647
q = 95% 1.199 1.065 1.185 1.179 0.930 1.033 1.113 1.032 1.138 1.073 0.947 0.995 0.892
q = 99% 1.842 1.647 1.822 1.841 1.430 1.601 1.735 1.550 1.741 1.655 1.436 1.540 1.414

VaR2day q = 90% 1.208 1.092 1.226 1.201 0.966 1.090 1.160 1.082 1.214 1.113 1.008 1.074
q = 95% 1.696 1.506 1.675 1.668 1.315 1.461 1.574 1.459 1.610 1.518 1.339 1.407
q = 99% 2.605 2.330 2.576 2.604 2.022 2.264 2.454 2.192 2.462 2.341 2.030 2.178

VaR3day q = 90% 1.480 1.338 1.501 1.471 1.183 1.335 1.421 1.325 1.486 1.363 1.235 1.315
q = 95% 2.077 1.844 2.052 2.043 1.611 1.789 1.928 1.787 1.971 1.859 1.640 1.723
q = 99% 3.190 2.853 3.155 3.189 2.476 2.773 3.006 2.685 3.015 2.867 2.487 2.667

ES1day q = 90% 0.949 0.858 0.963 0.944 0.759 0.856 0.911 0.850 0.953 0.875 0.792 0.844 0.719
q = 95% 1.262 1.121 1.247 1.241 0.979 1.087 1.171 1.086 1.198 1.130 0.997 1.047 0.939
q = 99% 1.861 1.664 1.840 1.860 1.444 1.617 1.753 1.566 1.758 1.672 1.450 1.556 1.429

ES2day q = 90% 1.342 1.214 1.362 1.335 1.073 1.211 1.289 1.202 1.348 1.237 1.120 1.193
q = 95% 1.785 1.585 1.764 1.756 1.384 1.538 1.657 1.536 1.694 1.597 1.410 1.481
q = 99% 2.631 2.353 2.602 2.630 2.042 2.287 2.479 2.215 2.487 2.364 2.051 2.200

ES3day q = 90% 1.644 1.486 1.668 1.635 1.314 1.483 1.579 1.472 1.651 1.515 1.372 1.461
q = 95% 2.186 1.941 2.160 2.150 1.696 1.883 2.029 1.881 2.075 1.956 1.727 1.814
q = 99% 3.223 2.882 3.187 3.222 2.501 2.801 3.036 2.712 3.046 2.896 2.512 2.694

Panel B: TSX t = March 31, 2017
t+1day 4.273 3.711 4.111 4.132 3.679 4.018 4.262 3.659 4.108 4.011 3.625 4.089 3.627

σ t+2day 4.325 3.738 4.149 4.191 3.724 4.073 4.290 3.666 4.133 4.052 3.653 4.142
t+3day 4.375 3.764 4.184 4.250 3.767 4.126 4.317 3.672 4.157 4.093 3.680 4.190

VaR1day q = 90% 0.346 0.307 0.344 0.339 0.307 0.335 0.356 0.308 0.336 0.340 0.310 0.351 0.299
q = 95% 0.472 0.413 1.185 0.456 0.414 0.454 0.478 0.413 0.461 0.459 0.416 0.474 0.410
q = 99% 0.724 0.611 1.822 0.722 0.625 0.685 0.743 0.625 0.681 0.728 0.636 0.720 0.646

VaR2day q = 90% 0.490 0.434 1.226 0.479 0.434 0.473 0.503 0.436 0.475 0.481 0.438 0.496
q = 95% 0.668 0.583 1.675 0.644 0.585 0.642 0.677 0.584 0.653 0.648 0.588 0.670
q = 99% 1.024 0.865 2.576 1.021 0.883 0.968 1.050 0.884 0.963 1.029 0.900 1.018

VaR3day q = 90% 0.600 0.531 1.501 0.587 0.532 0.580 0.616 0.533 0.582 0.589 0.536 0.608
q = 95% 0.818 0.715 2.052 0.789 0.717 0.787 0.829 0.715 0.799 0.794 0.720 0.821
q = 99% 1.254 1.059 3.155 1.251 1.082 1.186 1.286 1.083 1.180 1.261 1.102 1.247

ES1day q = 90% 0.385 0.341 0.382 0.377 0.341 0.372 0.395 0.342 0.379 0.378 0.344 0.390 0.332
q = 95% 0.497 0.434 0.481 0.480 0.436 0.478 0.504 0.435 0.493 0.483 0.438 0.499 0.432
q = 99% 0.731 0.618 0.688 0.729 0.631 0.692 0.750 0.632 0.699 0.735 0.643 0.727 0.653

ES2day q = 90% 0.544 0.482 0.541 0.533 0.482 0.526 0.559 0.484 0.535 0.535 0.487 0.552
q = 95% 0.703 0.614 0.680 0.678 0.616 0.676 0.712 0.615 0.697 0.683 0.619 0.705
q = 99% 1.034 0.873 0.973 1.032 0.892 0.978 1.061 0.893 0.988 1.040 0.909 1.028

ES3day q = 90% 0.667 0.590 0.662 0.652 0.591 0.644 0.685 0.593 0.656 0.655 0.596 0.676
q = 95% 0.861 0.752 0.832 0.831 0.755 0.828 0.872 0.753 0.854 0.836 0.758 0.864
q = 99% 1.267 1.070 1.192 1.263 1.093 1.198 1.299 1.094 1.210 1.273 1.114 1.259

Notes: This table presents 1 to 3 day forecasts of volatility, VaR and ES produced by each volatility model for SPX and TSX at the time
of low volatility. VaR and ES were estimated using Hull and White (1998) method.
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Table 7: Forecasts of Volatility and Tail Risk: High Volatility

GTARCH GTARCH0 GJR-GARCH GARCH EWMA
Forecast NoSpline Spline SMacro NoSpline Spline SMacro NoSpline Spline SMacro NoSpline Spline SMacro

Panel A: SPX t = November 11, 2008
t+1day 91.214 88.806 84.678 83.340 79.724 79.610 81.014 80.449 77.198 66.241 64.261 62.656 71.063

σ t+2day 90.654 87.345 83.405 82.996 78.529 78.561 80.039 78.526 75.390 65.520 63.063 61.794
t+3day 90.098 85.924 82.168 82.654 77.374 77.553 79.077 76.685 73.670 64.808 61.927 60.994

VaR1day q = 90% 7.385 7.130 6.771 6.787 6.628 6.562 6.611 6.669 6.412 5.560 5.451 5.285 5.717
q = 95% 10.119 9.726 9.044 9.138 8.683 8.475 8.893 8.845 8.113 7.490 7.205 6.581 7.881
q = 99% 14.558 14.461 13.050 13.962 12.585 12.886 12.726 12.163 11.703 10.608 9.938 9.714 12.494

VaR2day q = 90% 10.444 10.083 9.575 9.599 9.373 9.280 9.350 9.431 9.068 7.863 7.709 7.475
q = 95% 14.311 13.755 12.791 12.923 12.280 11.986 12.577 12.508 11.473 10.593 10.189 9.307
q = 99% 20.589 20.451 18.455 19.746 17.799 18.223 17.997 17.202 16.550 15.001 14.054 13.738

VaR3day q = 90% 12.792 12.349 11.727 11.756 11.480 11.365 11.451 11.551 11.106 9.630 9.441 9.155
q = 95% 17.527 16.846 15.665 15.828 15.040 14.679 15.404 15.320 14.052 12.973 12.479 11.399
q = 99% 25.216 25.048 22.603 24.183 21.799 22.319 22.042 21.068 20.270 18.373 17.213 16.825

ES1day q = 90% 8.206 7.922 7.523 7.541 7.364 7.291 7.346 7.410 7.124 6.177 6.057 5.873 6.352
q = 95% 10.652 10.238 9.520 9.619 9.140 8.921 9.361 9.310 8.540 7.884 7.584 6.928 8.296
q = 99% 14.705 14.607 13.181 14.103 12.713 13.016 12.855 12.286 11.821 10.715 10.038 9.812 12.620

ES2day q = 90% 11.605 11.203 10.639 10.665 10.414 10.311 10.388 10.479 10.075 8.736 8.565 8.305
q = 95% 15.064 14.479 13.464 13.604 12.926 12.616 13.239 13.167 12.077 11.150 10.725 9.797
q = 99% 20.797 20.658 18.641 19.945 17.978 18.407 18.179 17.375 16.717 15.153 14.196 13.877

ES3day q = 90% 14.213 13.721 13.030 13.062 12.755 12.628 12.723 12.834 12.340 10.700 10.490 10.172
q = 95% 18.449 17.733 16.490 16.661 15.832 15.452 16.214 16.126 14.792 13.656 13.136 11.999
q = 99% 25.471 25.301 22.831 24.428 22.019 22.544 22.265 21.280 20.474 18.558 17.387 16.995

Panel B: TSX t = September 16, 2008
t+1day 14.694 17.452 16.305 13.449 16.265 15.233 15.724 17.760 17.229 14.554 16.287 15.911 13.363

σ t+2day 14.649 17.404 16.149 13.459 16.295 15.183 15.570 17.541 16.913 14.477 16.218 15.760
t+3day 14.604 17.358 15.999 13.469 16.325 15.135 15.417 17.333 16.617 14.400 16.152 15.621

VaR1day q = 90% 1.183 1.366 1.322 1.091 1.319 1.236 1.279 1.415 1.388 1.210 1.330 1.313 1.101
q = 95% 1.648 1.862 1.185 1.533 1.749 1.657 1.771 1.936 1.880 1.660 1.827 1.785 1.511
q = 99% 2.573 2.794 1.822 2.377 2.689 2.486 2.810 2.834 2.856 2.648 2.625 2.706 2.382

VaR2day q = 90% 1.674 1.933 1.226 1.543 1.865 1.748 1.808 2.002 1.963 1.711 1.880 1.857
q = 95% 2.331 2.634 1.675 2.169 2.473 2.344 2.504 2.738 2.658 2.347 2.584 2.524
q = 99% 3.639 3.951 2.576 3.361 3.803 3.515 3.974 4.008 4.039 3.745 3.713 3.827

VaR3day q = 90% 2.050 2.367 1.501 1.890 2.284 2.141 2.215 2.451 2.404 2.096 2.303 2.274
q = 95% 2.855 3.225 2.052 2.656 3.029 2.870 3.067 3.354 3.256 2.875 3.165 3.091
q = 99% 4.456 4.838 3.155 4.117 4.658 4.306 4.867 4.908 4.947 4.587 4.547 4.687

ES1day q = 90% 1.315 1.518 1.469 1.213 1.465 1.373 1.421 1.573 1.393 1.344 1.477 1.459 1.223
q = 95% 1.735 1.960 1.855 1.614 1.841 1.744 1.864 2.038 1.930 1.747 1.923 1.879 1.590
q = 99% 2.599 2.822 2.595 2.401 2.717 2.511 2.838 2.862 2.880 2.675 2.652 2.734 2.406

ES2day q = 90% 1.859 2.147 2.077 1.715 2.072 1.942 2.009 2.224 1.970 1.901 2.089 2.063
q = 95% 2.454 2.772 2.624 2.283 2.604 2.467 2.636 2.882 2.729 2.471 2.720 2.657
q = 99% 3.675 3.991 3.670 3.395 3.842 3.551 4.014 4.048 4.073 3.783 3.750 3.866

ES3day q = 90% 2.277 2.630 2.544 2.100 2.538 2.379 2.461 2.724 2.412 2.329 2.559 2.527
q = 95% 3.005 3.395 3.214 2.796 3.189 3.021 3.228 3.530 3.342 3.026 3.331 3.254
q = 99% 4.501 4.887 4.495 4.158 4.705 4.349 4.916 4.958 4.988 4.633 4.593 4.735

Notes: This table presents 1 to 3 day forecasts of volatility, VaR and ES produced by each volatility model for SPX and TSX at the time
of high volatility. VaR and ES were estimated using Hull and White (1998) method.
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Table 8: Backtesting for SPX and TSX VaR Models

Upper and lower bound from the Kupiec Test
Breaches allowed at 95% CI LB UB

VaRQ90 310 350
VaRQ95 146 175
VaRQ99 22 35

Breaches for SPX Data
GTARCH GTARCH0 GJR-GARCH GARCH EWMA

Spline 90% VaR 343 336 336 307
95% VaR 169 166 167 160
99% VaR 32 33 33 29

Spline + Macro Variable 90% VaR 336 327 326 308
95% VaR 171 167 166 160
99% VaR 34 29 32 30

No Spline 90% VaR 336 327 326 308 354
95% VaR 171 167 166 160 176
99% VaR 34 29 32 30 36

Breaches for TSX Data
GTARCH GTARCH0 GJR-GARCH GARCH EWMA

Spline 90% VaR 341 328 327 321
95% VaR 168 163 162 155
99% VaR 34 32 31 30

Spline + Macro Variable 90% VaR 330 329 332 312
95% VaR 164 152 162 151
99% VaR 33 33 33 27

No Spline 90% VaR 330 329 332 312 356
95% VaR 164 152 162 151 182
99% VaR 33 33 33 27 36

Notes: This table presents number of backtest breaches for VaR of SPX and TSX produced by each volatility model. VaR was estimated
using Hull and White (1998) method.
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Table 9: Threshold Regimes: SPX and TSX

Model Thresholds (in %) Proportion Unit Root
Low regime Middle regime High regime Low regime Middle regime High regime

Panel B: SPX Data

No Spline GTARCH 1.90 2.44 33% 25% 42% NO NO NO
GTARCH0 1.91 2.95 30% 41% 28% NO NO NO

GJR-GARCH 1.88 2.39 31% 25% 44% NO NO NO
GARCH 1.93 2.47 27% 29% 44% NO NO NO
EWMA 1.82 2.90 25% 44% 31% NO NO NO
Average 1.89 2.63 29% 33% 38%

Spline GTARCH 1.74 2.66 26% 39% 35% NO NO NO
GTARCH0 1.92 2.47 33% 26% 41% NO NO NO

GJR-GARCH 1.87 2.47 36% 26% 38% NO NO NO
GARCH 1.86 2.29 27% 25% 48% NO NO NO
Average 1.85 2.48 31% 29% 40%

Spline + GTARCH 1.74 2.74 28% 40% 32% NO NO NO
Macro GTARCH0 1.78 2.74 25% 41% 34% NO NO NO

Variables GJR-GARCH 1.74 2.18 26% 25% 49% NO NO NO
GARCH 1.85 2.85 27% 43% 30% NO NO NO
Average 1.78 2.63 26% 37% 36%

Overall Average 1.84 2.58 29% 33% 38%
Panel B: TSX Data

No Spline GTARCH 0.74 0.97 29% 29% 42% NO NO NO
GTARCH0 0.77 1.10 27% 41% 32% NO NO NO

GJR-GARCH 0.74 1.01 26% 33% 40% NO NO NO
GARCH 0.83 1.05 32% 29% 40% NO NO NO
EWMA 0.79 1.02 34% 26% 40% NO YES YES
Average 0.77 1.03 30% 32% 39%

Spline GTARCH 0.73 0.94 33% 26% 41% NO YES YES
GTARCH0 0.87 1.15 48% 25% 27% NO YES YES

GJR-GARCH 0.71 0.93 26% 30% 44% NO YES YES
GARCH 0.74 0.95 25% 27% 48% NO YES YES
Average 0.76 0.99 33% 27% 40%

Spline + GTARCH 0.82 1.12 47% 26% 27% NO YES NO
Macro GTARCH0 0.82 1.04 41% 26% 33% NO YES NO

Variables GJR-GARCH 0.70 0.87 25% 27% 47% NO NO NO
GARCH 0.75 1.05 26% 39% 36% NO YES NO
Average 0.77 1.02 35% 29% 36%

Overall Average 0.77 1.01 32% 29% 38%

Notes: This table presents results of three regime threshold autoregressive (3TAR) model applied
to VaR produced by each volatility model for SPX and TSX. VaR was estimated using Hull and
White (1998) method.
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Figure 1: High and Low Frequency Volatility: Spline-GTARCH for SPX
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Figure 2: High and Low Frequency Volatility: Spline-Macro-GTARCH for SPX
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Figure 3: High and Low Frequency Volatility: Spline-GTARCH for TSX
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Figure 4: High and Low Frequency Volatility: Spline-Macro-GTARCH for TSX
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Figure 5: SPX Log Returns and 1 day VaR: Spline-GTARCH
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Figure 6: TSX Log Returns and 1 day VaR: Spline-GTARCH
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Figure 7: Estimated Thresholds with 3 Regimes: Log(VaR) Spline-GTARCH for SPX
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Figure 8: Estimated Thresholds with 3 Regimes: Log(VaR) Spline-GTARCH for TSX
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